МУНИЦИПАЛЬНОЕ АВТОНОМНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «ВОЛКОВСКАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА»

Приложение № 1 к основной образовательной программе среднего общего образования

ПРИНЯТО Педагогическим советом Протокол № 4 от «30» мая 2022 г.

СОГЛАСОВАНО Заместитель директора по УВР <u>Ревысема</u> Рявкина О.В. «27» мая 2022 г. УТВЕРЖДЕНО Приказом директора МАОУ «Волковская СОШ» от «30» мая 2022 г. № 29-О Ситникова М.М.

Рабочая программа учебного предмета «Физика»

10-11 класс

Уровень обучения - среднее общее образование Нормативный срок освоения - 2 года

Составитель: Нурова Ситора Тавакаловна, учитель

Планируемые результаты освоения обучающимися учебного предмета «Физика»

Личностные результаты

Личностные результаты в сфере отношений обучающихся к себе, к своему здоровью, к познанию себя:

- ориентация обучающихся на достижение личного счастья, реализацию позитивных жизненных перспектив, инициативность, креативность, готовность и способность к личностному самоопределению, способность ставить цели и строить жизненные планы;
- готовность и способность обеспечить себе и своим близким достойную жизнь в процессе самостоятельной, творческой и ответственной деятельности;
- готовность и способность обучающихся к отстаиванию личного достоинства, собственного мнения, готовность и способность вырабатывать собственную позицию по отношению к общественно-политическим событиям прошлого и настоящего на основе осознания и осмысления истории, духовных ценностей и достижений нашей страны;
- готовность и способность обучающихся к саморазвитию и самовоспитанию в соответствии с общечеловеческими ценностями и идеалами гражданского общества, потребность в физическом самосовершенствовании, занятиях спортивно-оздоровительной деятельностью;
- принятие и реализация ценностей здорового и безопасного образа жизни, бережное, ответственное и компетентное отношение к собственному физическому и психологическому здоровью;
- неприятие вредных привычек: курения, употребления алкоголя, наркотиков.

Личностные результаты в сфере отношений обучающихся к России как к Родине (Отечеству):

- российская идентичность, способность к осознанию российской идентичности в поликультурном социуме, чувство причастности к историко-культурной общности российского народа и судьбе России, патриотизм, готовность к служению Отечеству, его защите;
- уважение к своему народу, чувство ответственности перед Родиной, гордости за свой край, свою Родину, прошлое и настоящее многонационального народа России, уважение к государственным символам (герб, флаг, гимн);
- формирование уважения к русскому языку как государственному языку Российской Федерации, являющемуся основой российской идентичности и главным фактором национального самоопределения;
- воспитание уважения к культуре, языкам, традициям и обычаям народов, проживающих в Российской Федерации.

Личностные результаты в сфере отношений обучающихся к закону, государству и к гражданскому обществу:

- гражданственность, гражданская позиция активного и ответственного члена российского общества, осознающего свои конституционные права и обязанности, уважающего закон и правопорядок, осознанно принимающего традиционные национальные и общечеловеческие гуманистические и демократические ценности, готового к участию в общественной жизни;
- признание неотчуждаемости основных прав и свобод человека, которые принадлежат каждому от рождения, готовность к осуществлению собственных прав и свобод без нарушения прав и свобод других лиц, готовность отстаивать собственные права и свободы человека и гражданина согласно общепризнанным принципам и нормам международного права и в соответствии с Конституцией Российской Федерации, правовая и политическая грамотность;
- мировоззрение, соответствующее современному уровню развития науки и общественной практики, основанное на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире;

- интериоризация ценностей демократии и социальной солидарности, готовность к договорному регулированию отношений в группе или социальной организации;
- готовность обучающихся к конструктивному участию в принятии решений, затрагивающих их права и интересы, в том числе в различных формах общественной самоорганизации, самоуправления, общественно значимой деятельности;
- приверженность идеям интернационализма, дружбы, равенства, взаимопомощи народов; воспитание уважительного отношения к национальному достоинству людей, их чувствам, религиозным убеждениям;
- готовность обучающихся противостоять идеологии экстремизма, национализма, ксенофобии; коррупции; дискриминации по социальным, религиозным, расовым, национальным признакам и другим негативным социальным явлениям.

Личностные результаты в сфере отношений обучающихся с окружающими людьми:

- нравственное сознание и поведение на основе усвоения общечеловеческих ценностей, толерантного сознания и поведения в поликультурном мире, готовности и способности вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения;
- принятие гуманистических ценностей, осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению;
- способность к сопереживанию и формирование позитивного отношения к людям, в том числе к лицам с ограниченными возможностями здоровья и инвалидам; бережное, ответственное и компетентное отношение к физическому и психологическому здоровью других людей, умение оказывать первую помощь;
- формирование выраженной в поведении нравственной позиции, в том числе способности к сознательному выбору добра, нравственного сознания и поведения на основе усвоения общечеловеческих ценностей и нравственных чувств (чести, долга, справедливости, милосердия и дружелюбия);
- развитие компетенций сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности.

Личностные результаты в сфере отношений обучающихся к окружающему миру, живой природе, художественной культуре:

- мировоззрение, соответствующее современному уровню развития науки, значимости науки, готовность к научно-техническому творчеству, владение достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в научных знаниях об устройстве мира и общества;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- экологическая культура, бережное отношения к родной земле, природным богатствам России и мира; понимание влияния социально-экономических процессов на состояние природной и социальной среды, ответственность за состояние природных ресурсов; умения и навыки разумного природопользования, нетерпимое отношение к действиям, приносящим вред экологии; приобретение опыта экологонаправленной деятельности;
- эстетическое отношения к миру, готовность к эстетическому обустройству собственного быта.

Личностные результаты в сфере отношений обучающихся к семье и родителям, в том числе подготовка к семейной жизни:

- ответственное отношение к созданию семьи на основе осознанного принятия ценностей семейной жизни;
- положительный образ семьи, родительства (отцовства и материнства), интериоризация традиционных семейных ценностей.

Личностные результаты в сфере отношения обучающихся к труду, в сфере социально-экономических отношений:

- уважение ко всем формам собственности, готовность к защите своей собственности,
- осознанный выбор будущей профессии как путь и способ реализации собственных жизненных планов;
- готовность обучающихся к трудовой профессиональной деятельности как к возможности участия в решении личных, общественных, государственных, общенациональных проблем;
- потребность трудиться, уважение к труду и людям труда, трудовым достижениям, добросовестное, ответственное и творческое отношение к разным видам трудовой деятельности;
- готовность к самообслуживанию, включая обучение и выполнение домашних обязанностей.

Личностные результаты в сфере физического, психологического, социального и академического благополучия обучающихся:

- физическое, эмоционально-психологическое, социальное благополучие обучающихся в жизни образовательной организации, ощущение детьми безопасности и психологического комфорта, информационной безопасности.

Личностные результаты в сфере антикоррупционного мировоззрения и правовой культуры, повышение уровня правосознания граждан и популяризация антикоррупционных стандартов поведения, основанных на знаниях общих прав и обязанностей:

- -усвоение гуманистических, демократических и традиционных ценностей многонационального российского общества;
- -освоение социальных норм, правил поведения, ролей и форм социальной жизни в группах и сообществах, включая взрослые и социальные сообщества;
- -развитие морального сознания и компетентности в решении моральных проблем на основе личностного выбора, формирование нравственных чувств и нравственного поведения, осознанного и ответственного отношения к собственным поступкам;
- -формирование основ правосознания для соотнесения собственного поведения и поступков других людей с нравственными ценностями и нормами поведения, установленными законодательством Российской Федерации, убежденности в необходимости защищать правопорядок правовыми способами и средствами, умений реализовывать основные социальные роли в пределах своей дееспособности.

Метапредметные результаты

Метапредметные результаты освоения основной образовательной программы представлены тремя группами универсальных учебных действий (УУД):

1. Регулятивные универсальные учебные действия

Выпускник научится:

- самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;
- оценивать возможные последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей, основываясь на соображениях этики и морали;
- ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели;
- выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты;

- организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;
- сопоставлять полученный результат деятельности с поставленной заранее целью.

2. Познавательные универсальные учебные действия

Выпускник научится:

- искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
- критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках;
- находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
- менять и удерживать разные позиции в познавательной деятельности.

3. Коммуникативные универсальные учебные действия

Выпускник научится:

- осуществлять деловую коммуникацию, как со сверстниками, так и с взрослыми (как внутри образовательной организации, так и за ее пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных симпатий;
- при осуществлении групповой работы быть как руководителем, так и членом команды в разных ролях (генератор идей, критик, исполнитель, выступающий, эксперт и т.д.);
- координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;
- развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
- распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы, выстраивать деловую и образовательную коммуникацию, избегая личностных оценочных суждений.

Предметные результаты

Выпускник на базовом уровне научится:

- демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;
- демонстрировать на примерах взаимосвязь между физикой и другими естественными науками;
- устанавливать взаимосвязь естественнонаучных явлений и применять основные физические модели для их описания и объяснения;
- использовать информацию физического содержания при решении учебных, практических, проектных и исследовательских задач, интегрируя информацию из различных источников и критически ее оценивая;
- различать и уметь использовать в учебно-исследовательской деятельности методы научного познания (наблюдение, описание, измерение, эксперимент, выдвижение гипотезы, моделирование и др.) и формы научного познания (факты, законы, теории), демонстрируя на примерах их роль и место в научном познании;

- проводить прямые и косвенные изменения физических величин, выбирая измерительные приборы с учетом необходимой точности измерений, планировать ход измерений, получать значение измеряемой величины и оценивать относительную погрешность по заданным формулам;
- проводить исследования зависимостей между физическими величинами: проводить измерения и определять на основе исследования значение параметров, характеризующих данную зависимость между величинами, и делать вывод с учетом погрешности измерений;
- использовать для описания характера протекания физических процессов физические величины и демонстрировать взаимосвязь между ними;
- использовать для описания характера протекания физических процессов физические законы с учетом границ их применимости;
- решать качественные задачи (в том числе и межпредметного характера): используя модели, физические величины и законы, выстраивать логически верную цепочку объяснения (доказательства) предложенного в задаче процесса (явления);
- решать расчетные задачи с явно заданной физической моделью: на основе анализа условия задачи выделять физическую модель, находить физические величины и законы, необходимые и достаточные для ее решения, проводить расчеты и проверять полученный результат;
- учитывать границы применения изученных физических моделей при решении физических и межпредметных задач;
- использовать информацию и применять знания о принципах работы и основных характеристиках изученных машин, приборов и других технических устройств для решения практических, учебно-исследовательских и проектных задач;
- использовать знания о физических объектах и процессах в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде, для принятия решений в повседневной жизни.

Выпускник на базовом уровне получит возможность научиться:

- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;
- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
- самостоятельно планировать и проводить физические эксперименты;
- характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические, и роль физики в решении этих проблем;
- решать практико-ориентированные качественные и расчетные физические задачи с выбором физической модели, используя несколько физических законов или формул, связывающих известные физические величины, в контексте межпредметных связей;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.

Содержание учебного предмета «Физика»

Физика и естественнонаучный метод познания природы

Физика - фундаментальная наука о природе. Методы научного исследования физических явлений. Моделирование физических явлений и процессов. Физический закон - границы

применимости. Физические теории и принцип соответствия. Роль и место физики в формировании современной научной картины мира, в практической деятельности людей. Физика и культура.

Механика

Границы применимости классической механики. Важнейшие кинематические характеристики - перемещение, скорость, ускорение. Основные модели тел и движений.

Взаимодействие тел. Законы Всемирного тяготения, Гука, сухого трения. Инерциальная система отсчета. Законы механики Ньютона.

Импульс материальной точки и системы. Изменение и сохранение импульса. Использование законов механики для объяснения движения небесных тел и для развития космических исследований. Механическая энергия системы тел. Закон сохранения механической энергии. Работа силы.

Равновесие материальной точки и твердого тела. Условия равновесия. Момент силы. Равновесие жидкости и газа. Движение жидкостей и газов.

Механические колебания и волны. Превращения энергии при колебаниях. Энергия волны.

Молекулярная физика и термодинамика

Молекулярно-кинетическая теория (МКТ) строения вещества и ее экспериментальные доказательства. Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества. Модель идеального газа. Давление газа. Уравнение состояния идеального газа. Уравнение Менделеева-Клапейрона.

Агрегатные состояния вещества. Модель строения жидкостей.

Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии. Первый закон термодинамики. Необратимость тепловых процессов. Принципы действия тепловых машин.

Электродинамика

Электрическое поле. Закон Кулона. Напряженность и потенциал электростатического поля. Проводники, полупроводники и диэлектрики. Конденсатор.

Постоянный электрический ток. Электродвижущая сила. Закон Ома для полной цепи. Электрический ток в проводниках, электролитах, полупроводниках, газах и вакууме. Сверхпроводимость.

Индукция магнитного поля. Действие магнитного поля на проводник с током и движущуюся заряженную частицу. Сила Ампера и сила Лоренца. Магнитные свойства вещества.

Закон электромагнитной индукции. Электромагнитное поле. Переменный ток. Явление самоиндукции. Индуктивность. Энергия электромагнитного поля.

Электромагнитные колебания. Колебательный контур.

Электромагнитные волны. Диапазоны электромагнитных излучений и их практическое применение.

Геометрическая оптика. Волновые свойства света.

Основы специальной теории относительности

Инвариантность модуля скорости света в вакууме. Принцип относительности Эйнштейна. Связь массы и энергии свободной частицы. Энергия покоя.

Квантовая физика. Физика атома и атомного ядра

Гипотеза М. Планка. Фотоэлектрический эффект. Фотон. Корпускулярно-волновой дуализм. Соотношение неопределенностей Гейзенберга.

Планетарная модель атома. Объяснение линейчатого спектра водорода на основе квантовых постулатов Бора.

Состав и строение атомного ядра. Энергия связи атомных ядер. Виды радиоактивных превращений атомных ядер.

Закон радиоактивного распада. Ядерные реакции. Цепная реакция деления ядер.

Элементарные частицы. Фундаментальные взаимодействия.

Строение Вселенной

Современные представления о происхождении и эволюции Солнца и звезд. Классификация звезд. Звезды и источники их энергии.

Галактика. Представление о строении и эволюции Вселенной.

Примерный перечень практических и лабораторных работ (на выбор учителя)

Прямые измерения:

- измерение мгновенной скорости с использованием секундомера или компьютера с датчиками;
- сравнение масс (по взаимодействию);
- измерение сил в механике;
- измерение температуры жидкостными и цифровыми термометрами;
- оценка сил взаимодействия молекул (методом отрыва капель);
- измерение термодинамических параметров газа;
- измерение ЭДС источника тока;
- измерение силы взаимодействия катушки с током и магнита помощью электронных весов;
- определение периода обращения двойных звезд (печатные материалы).

Косвенные измерения:

- измерение ускорения;
- измерение ускорения свободного падения;
- определение энергии и импульса по тормозному пути;
- измерение удельной теплоты плавления льда;
- измерение напряженности вихревого электрического поля (при наблюдении электромагнитной индукции);
- измерение внутреннего сопротивления источника тока;
- определение показателя преломления среды;
- измерение фокусного расстояния собирающей и рассеивающей линз;
- определение длины световой волны;
- определение импульса и энергии частицы при движении в магнитном поле (по фотографиям).

Наблюдение явлений:

- наблюдение механических явлений в инерциальных и неинерциальных системах отсчета;
- наблюдение вынужденных колебаний и резонанса;
- наблюдение диффузии;
- наблюдение явления электромагнитной индукции;
- наблюдение волновых свойств света: дифракция, интерференция, поляризация;
- наблюдение спектров;
- вечерние наблюдения звезд, Луны и планет в телескоп или бинокль.

Исследования:

- исследование равноускоренного движения с использованием электронного секундомера или компьютера с датчиками;
- исследование движения тела, брошенного горизонтально;
- исследование центрального удара;
- исследование качения цилиндра по наклонной плоскости;
- исследование движения броуновской частицы (по трекам Перрена);
- исследование изопроцессов;
- исследование изохорного процесса и оценка абсолютного нуля;
- исследование остывания воды;
- исследование зависимости напряжения на полюсах источника тока от силы тока в цепи;
- исследование зависимости силы тока через лампочку от напряжения на ней;
- исследование нагревания воды нагревателем небольшой мощности;

- исследование явления электромагнитной индукции;
- исследование зависимости угла преломления от угла падения;
- исследование зависимости расстояния от линзы до изображения от расстояния от линзы до предмета;
- исследование спектра водорода;
- исследование движения двойных звезд (по печатным материалам).

Проверка гипотез (в том числе имеются неверные):

- при движении бруска по наклонной плоскости время перемещения на определенное расстояния тем больше, чем больше масса бруска;
- при движении бруска по наклонной плоскости скорость прямо пропорциональна пути;
- при затухании колебаний амплитуда обратно пропорциональна времени;
- квадрат среднего перемещения броуновской частицы прямо пропорционален времени наблюдения (по трекам Перрена);
- скорость остывания воды линейно зависит от времени остывания;
- напряжение при последовательном включении лампочки и резистора не равно сумме напряжений на лампочке и резисторе;
- угол преломления прямо пропорционален углу падения;
- при плотном сложении двух линз оптические силы складываются;

Конструирование технических устройств:

- конструирование наклонной плоскости с заданным КПД;
- конструирование рычажных весов;
- конструирование наклонной плоскости, по которой брусок движется с заданным ускорением;
- конструирование электродвигателя;
- конструирование трансформатора;
- конструирование модели телескопа или микроскопа.

Тематическое планирование с указанием количества часов, отводимых на освоение каждой темы 10 класс

(2 часа в неделю, всего 68 часов)

Тема	Содержание
Физика и	Физика - фундаментальная наука о природе. Методы
естественнонаучный	научного исследования физических явлений.
метод познания природы	Моделирование физических явлений и процессов.
(2 ч.)	Физический закон - границы применимости. Физические
	теории и принцип соответствия. Роль и место физики в
	формировании современной научной картины мира, в
	практической деятельности людей. Физика и культура.
Механика	Границы применимости классической механики. Важнейшие
(25 ч.)	кинематические характеристики - перемещение, скорость,
$\pi/p-2$	ускорение. Основные модели тел и движений.
к/p - 3	Взаимодействие тел. Законы Всемирного тяготения, Гука,
	сухого трения. Инерциальная система отсчета. Законы
	механики Ньютона.
	Импульс материальной точки и системы. Изменение и
	сохранение импульса. Использование законов механики для
	объяснения движения небесных тел и для развития
	космических исследований. Механическая энергия системы
	тел. Закон сохранения механической энергии. Работа силы.
	Равновесие материальной точки и твердого тела. Условия
	равновесия. Момент силы. Равновесие жидкости и газа.
	Движение жидкостей и газов.
Молекулярная физика и	Молекулярно-кинетическая теория (МКТ) строения
термодинамика	вещества и ее экспериментальные доказательства.

(19 ч.)	Абсолютная температура как мера средней кинетической
$\pi/p-1$	энергии теплового движения частиц вещества. Модель
к/p - 2	идеального газа. Давление газа. Уравнение состояния
	идеального газа. Уравнение Менделеева-Клапейрона.
	Агрегатные состояния вещества. Модель строения
	жидкостей.
	Внутренняя энергия. Работа и теплопередача как способы
	изменения внутренней энергии. Первый закон
	термодинамики. Необратимость тепловых процессов.
	Принципы действия тепловых машин.
Электродинамика	Электрическое поле. Закон Кулона. Напряженность и
(22 ч.)	потенциал электростатического поля. Проводники,
$\pi/p-2$	полупроводники и диэлектрики. Конденсатор.
к/р - 1	Постоянный электрический ток. Электродвижущая сила.
	Закон Ома для полной цепи. Электрический ток в
	проводниках, электролитах, полупроводниках, газах и
	вакууме. Сверхпроводимость.

Тематическое планирование 10 класс (68 часов)

№	Тема	Кол- во
		часов
1	Физика - фундаментальная наука о природе. Методы научного	1
	исследования физических явлений. Моделирование физических явлений и	
	процессов. Физический закон - границы применимости.	
2	Физические теории и принцип соответствия. Роль и место физики в	1
	формировании современной научной картины мира, в практической	
2	деятельности людей. Физика и культура.	
3	Вводная контрольная работа	1
4	Важнейшие кинематические характеристики - перемещение, скорость,	1
_	ускорение.	4
5	Важнейшие кинематические характеристики - перемещение, скорость,	1
6	ускорение.	1
Ü	Важнейшие кинематические характеристики - перемещение, скорость, ускорение.	1
7	Ускорение. Движение с постоянным ускорением	1
8	Важнейшие кинематические характеристики - перемещение, скорость,	1
O	ускорение.	_
9	Основные модели тел и движений.	1
10	Контрольная работа по теме "Кинематика"	1
11	Взаимодействие тел. Законы Всемирного тяготения, Гука, сухого трения.	1
12	Взаимодействие тел. Законы Всемирного тяготения, Гука, сухого трения.	1
13	Взаимодействие тел. Законы Всемирного тяготения, Гука, сухого трения.	1
14	Взаимодействие тел. Законы Всемирного тяготения, Гука, сухого трения.	1
15	Инерциальная система отсчета	1
16	Законы механики Ньютона.	1
17	Законы механики Ньютона.	1
18	Законы механики Ньютона.	1
19	Законы механики Ньютона.	1
20	Контрольная работа по теме "Динамика"	1
21	Импульс материальной точки и системы. Изменение и сохранение	1
	импульса.	_

22 Использование законов механики для объяснения движения небесни для развития космических исследований.	
и для развития космических исследовании.	ных тел 1
23 Механическая энергия системы тел.	1
24 Закон сохранения механической энергии. Работа силы.	1
25 Равновесие материальной точки и твердого тела. Условия равновес Момент силы.	сия. 1
26 Равновесие жидкости и газа. Движение жидкостей и газов.	1
27 Равновесие жидкости и газа. Движение жидкостей и газов.	1
28 Молекулярно-кинетическая теория (МКТ) строения вещества и ее	1
экспериментальные доказательства.	
29 Абсолютная температура как мера средней кинетической энергии	1
теплового движения частиц вещества.	
30 Модель идеального газа. Давление газа.	1
31 Уравнение состояния идеального газа.	1
32 Уравнение состояния идеального газа.	1
33 Уравнение Менделеева-Клапейрона.	1
34 Уравнение Менделеева-Клапейрона.	1
35 Агрегатные состояния вещества. Модель строения жидкостей. Вну	тренняя 1
энергия.	
36 Агрегатные состояния вещества. Модель строения жидкостей.	1
37 Агрегатные состояния вещества. Модель строения жидкостей.	1
38 Уравнение состояния идеального газа. Уравнение Менделеева-	1
Клапейрона.	
39 Контрольная работа "Основы МКТ"	1
40 Внутренняя энергия	1
41 Работа и теплопередача как способы изменения внутренней энерги	и. 1
42 Работа и теплопередача как способы изменения внутренней энерги	
43 Первый закон термодинамики	1
44 Первый закон термодинамики	1
45 Необратимость тепловых процессов.	1
46 Принципы действия тепловых машин.	1
47 Контрольная работа "Термодинамика"	1
48 Электрическое поле. Закон Кулона.	1
49 Электрическое поле. Закон Кулона.	1
50 Напряженность и потенциал электростатического поля.	1
51 Проводники, полупроводники и диэлектрики	1
52 Конденсатор	1
	1
53 Энергия электрического поля конденсатора.54 Постоянный электрический ток	1
55 Закон Ома для полной цепи	1
56 Лабораторная работа "Последовательное и параллельное соединені проводников"	ие 1
57 Электродвижущая сила.	1
58 Электрический ток в проводниках, электролитах, полупроводниках	х, газах 1
и вакууме.	
59 Электрический ток в проводниках, электролитах, полупроводниках	х, газах 1
и вакууме.	
60 Сверхпроводимость.	1
61 Контрольная работа по теме "Основы электродинамики"	1
1 1	оля. 1
62 Закон Кулона. Напряженность и потенциал электростатического по	
1 1	1 1

65	Закон Ома для полной цепи.	1
66	Закон Ома для полной цепи.	1
67	Электрический ток в проводниках, электролитах, полупроводниках, газах	1
	и вакууме.	
68	Сверхпроводимость.	1

11 класс

(2 часа в неделю, всего 68 часов)

Тема	Содержание
Электродинамика	Индукция магнитного поля. Действие магнитного поля на
(31 ч.)	проводник с током и движущуюся заряженную частицу.
$\pi/p-5$	Сила Ампера и сила Лоренца. Магнитные свойства вещества.
к/p - 3	Закон электромагнитной индукции. Электромагнитное поле.
	Переменный ток. Явление самоиндукции. Индуктивность.
	Энергия электромагнитного поля.
	Электромагнитные колебания. Колебательный контур.
	Электромагнитные волны. Диапазоны электромагнитных
	излучений и их практическое применение.
	Геометрическая оптика. Волновые свойства света.
Основы специальной	Инвариантность модуля скорости света в вакууме. Принцип
теории относительности	относительности Эйнштейна. Связь массы и энергии
(4 ч.)	свободной частицы. Энергия покоя.
л/р - 0	
к/p - 1	
Квантовая физика.	Гипотеза М. Планка. Фотоэлектрический эффект. Фотон.
Физика атома и атомного	Корпускулярно-волновой дуализм. Соотношение
ядра	неопределенностей Гейзенберга.
(28 ч.)	Планетарная модель атома. Объяснение линейчатого спектра
$\pi/p - 0$	водорода на основе квантовых постулатов Бора.
к/p - 1	Состав и строение атомного ядра. Энергия связи атомных
	ядер. Виды радиоактивных превращений атомных ядер.
	Закон радиоактивного распада. Ядерные реакции. Цепная
	реакция деления ядер.
	Элементарные частицы. Фундаментальные взаимодействия.
Строение Вселенной	Современные представления о происхождении и эволюции
(5 ч.)	Солнца и звезд. Классификация звезд. Звезды и источники их
	энергии.
	Галактика. Представление о строении и эволюции
	Вселенной.

Тематическое планирование 11 класс

(2 часа в неделю, всего 68 часов)

№	Тема	Кол-
		во
		часов
1	Индукция магнитного поля.	1
2	Действие магнитного поля на проводник с током и движущуюся	1
	заряженную частицу. Лабораторная работа №1 "Наблюдение действия	
	магнитного поля тока"	
3	Сила Ампера и сила Лоренца.	1
4	Магнитные свойства вещества	1
5	Вводная контрольная работа	1

6	Сила Ампера и сила Лоренца. Магнитные свойства вещества.	1
7	Закон электромагнитной индукции. Лабораторная работа №2	1
	"Наблюдение явления электромагнитной индукции"	
8	Электромагнитное поле.	1
9	Переменный ток	1
10	Переменный ток	1
11	Явление самоиндукции.	1
12	Явление самоиндукции.	1
13	Индуктивность.	1
14	Индуктивность.	1
15	Энергия электромагнитного поля.	1
16	Контрольная работа №1 по теме "Магнитное поле. Электромагнитная индукция"	1
17	Электромагнитные колебания	1
18	Колебательный контур.	1
19	Электромагнитные волны.	1
20	Диапазоны электромагнитных излучений и их практическое применение	1
21	Лабораторная работа №3 "Определение ускорения свободного падения	1
	при помощи маятника	
22	Геометрическая оптика. Волновые свойства света.	1
23	Контрольная работа №2 по теме "Колебания и волны"	1
24	Геометрическая оптика.	1
25	Волновые свойства света.	1
26	Геометрическая оптика. Волновые свойства света.	1
27	Геометрическая оптика. Волновые свойства света.	1
28	Геометрическая оптика. Волновые свойства света.	1
29	Геометрическая оптика. Волновые свойства света.	1
30	Лабораторная работа №5 "Определение оптической силы и фокусного расстояния собирающей линзы"	1
31	Геометрическая оптика. Волновые свойства света.	1
32	Геометрическая оптика. Волновые свойства света.	1
33	Лабораторная работа "Измерение длины световой волны"	1
34	Контрольная работа "Оптика"	1
35	Инвариантность модуля скорости света в вакууме.	1
36	Принцип относительности Эйнштейна	1
37	Связь массы и энергии свободной частицы.	1
38	Энергия покоя.	1
39	Гипотеза М. Планка. Фотоэлектрический эффект. Фотон.	1
40	Гипотеза М. Планка. Фотоэлектрический эффект. Фотон.	1
41	Корпускулярно-волновой дуализм. Соотношение неопределенностей	1
42	Гейзенберга. Планетарная модель атома. Объяснение линейчатого спектра водорода на	1
	основе квантовых постулатов Бора.	
43	Состав и строение атомного ядра. Энергия связи атомных ядер	1
44	Состав и строение атомного ядра. Энергия связи атомных ядер	1
45	Виды радиоактивных превращений атомных ядер.	1
46	Виды радиоактивных превращений атомных ядер.	1
47	Закон радиоактивного распада. Ядерные реакции.	1
48	Закон радиоактивного распада. Ядерные реакции.	1
49	Цепная реакция деления ядер.	1
50	Цепная реакция деления ядер.	1

51	Элементарные частицы. Фундаментальные взаимодействия.	1
52	Элементарные частицы. Фундаментальные взаимодействия.	1
53	Контрольная работа "Физика атомного ядра"	1
54	Современные представления о происхождении и эволюции Солнца и	1
	звезд.	
55	Современные представления о происхождении и эволюции Солнца и	1
	звезд.	
56	Классификация звезд	1
57	Звезды и источники их энергии	1
58	Галактика.	1
59	Представление о строении и эволюции Вселенной.	1
60	Итоговая контрольная работа.	1
61	Закон электромагнитной индукции. Электромагнитное поле. Переменный	1
	ток. Явление самоиндукции. Индуктивность. Энергия электромагнитного	
	поля.	
62	Закон электромагнитной индукции. Электромагнитное поле. Переменный	1
	ток. Явление самоиндукции. Индуктивность. Энергия электромагнитного	
	поля.	
63	Электромагнитные колебания. Колебательный контур.	1
64	Геометрическая оптика. Волновые свойства света.	1
65	Фотоэлектрический эффект. Фотон.	1
66	Фотоэлектрический эффект. Фотон.	1
67	Энергия связи атомных ядер. Виды радиоактивных превращений атомных	1
	ядер.	
68	Закон радиоактивного распада. Ядерные реакции. Цепная реакция деления	1
	ядер.	